Power flow analysis via typed graph neural networks

نویسندگان

چکیده

Power flow analyses are essential for the correct operation of power grids, however, electricity systems becoming increasingly complex to analyze with conventional numerical methods. The present work proposes a typed graph neural network based approach solve problem. networks trained on benchmark grid cases which modified by varying injections (load and generation), branch characteristics topology. solution analysis is found when all voltage values known. proposed system infers magnitude phase so that obtained minimize violation physical laws govern system, this way training achieved in an unsupervised manner. solver has linear time complexity able generalize grids considerably different conditions, including size, from available during training. Though does not suppose any ground truth data, solutions have close correlation Newton–Raphson method. results additionally validated finding root mean square deviation method, faster, though less accurate, DC approximation • This presents physics-informed solver. linear. can parameters sizes. considering single line outages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Graph Convolutional Neural Networks via Scattering

We generalize the scattering transform to graphs and consequently construct a convolutional neural network on graphs. We show that under certain conditions, any feature generated by such a network is approximately invariant to permutations and stable to graph manipulations. Numerical results demonstrate competitive performance on relevant datasets.

متن کامل

Strongly-Typed Recurrent Neural Networks

Recurrent neural networks are increasing popular models for sequential learning. Unfortunately, although the most effective RNN architectures are perhaps excessively complicated, extensive searches have not found simpler alternatives. This paper imports ideas from physics and functional programming into RNN design to provide guiding principles. From physics we introduce type constraints, analog...

متن کامل

PANN: Power Allocation via Neural Networks

Exascale architecture computers will be limited not only by hardware but also by power consumption. In these bounded power situations, a system can deliver better results by overprovisioning – having more hardware than can be fully powered. Overprovisioned systems require power to be an integral part of any scheduling algorithm. This paper introduces a system called PANN that uses neural networ...

متن کامل

Unraveling Protein Networks with Power Graph Analysis

Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Applications of Artificial Intelligence

سال: 2023

ISSN: ['1873-6769', '0952-1976']

DOI: https://doi.org/10.1016/j.engappai.2022.105567